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Abstract

We revisit the classic randomized sketch of a tensor product of q vectors xi ∈ Rn.
The i-th coordinate (Sx)i of the sketch is equal to

∏q
j=1〈ui,j , xj〉/

√
m, where

ui,j are independent random sign vectors. Kar and Karnick (JMLR, 2012) show
that if the sketching dimension m = Ω(ε−2C2

Ω log(1/δ)), where CΩ is a certain
property of the point set Ω one wants to sketch, then with probability 1 − δ,
‖Sx‖2 = (1± ε)‖x‖2 for all x ∈ Ω. However, in their analysis C2

Ω can be as large
as Θ(n2q), even for a set Ω of O(1) vectors x.
We give a new analysis of this sketch, providing nearly optimal bounds. Namely,
we show an upper bound of m = Θ

(
ε−2 log(n/δ) + ε−1 logq(n/δ)

)
, which

by composing with CountSketch, can be improved to Θ(ε−2 log(1/(δε)) +
ε−1 logq(1/(δε)). For the important case of q = 2 and δ = 1/poly(n), this
shows that m = Θ(ε−2 log(n) + ε−1 log2(n)), demonstrating that the ε−2 and
log2(n) terms do not multiply each other. We also show a nearly matching lower
bound of m = Ω(ε−2 log(1/(δ)) + ε−1 logq(1/(δ))). In a number of applications,
one has |Ω| = poly(n) and in this case our bounds are optimal up to a constant
factor. This is the first high probability sketch for tensor products that has optimal
sketch size and can be implemented in m ·

∑q
i=1 nnz(xi) time, where nnz(xi) is

the number of non-zero entries of xi.
Lastly, we empirically compare our sketch to other sketches for tensor products,
and give a novel application to compressing neural networks.

1 Introduction

Dimensionality reduction, or sketching, is a way of embedding high-dimensional data into a low-
dimensional space, while approximately preserving distances between data points. The embedded
data is often easier to store and manipulate, and typically results in much faster algorithms. Therefore,
it is often beneficial to sketch a dataset first and then run machine learning algorithms on the sketched
data. This technique has been applied to numerical linear algebra problems [37], classification [9, 10],
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data stream algorithms [33], nearest neighbor search [22], sparse recovery [12, 20], and numerous
other problems.

While effective, in many modern machine learning problems the points one would like to embed
are often only specified implicitly. Kernel machines, such as support vector machines, are one
example, for which one first non-linearly transforms the input points before running an algorithm.
Such machines are much more powerful than their linear counterparts, as they can approximate
any function or decision boundary arbitrary well with enough training data. In kernel applications
there is a feature map φ : Rn → Rn′ which maps inputs in Rn to a typically much higher n′-
dimensional space, with the important property that for x, y ∈ Rn, one can typically quickly compute
〈φ(x), φ(y)〉 given only 〈x, y〉. As many applications only depend on the geometry of the input
points, or equivalently inner product information, this allows one to work in the potentially much
higher and richer n′-dimensional space while running in time proportional to that of the smaller
n-dimensional space. Here often one would like to sketch the n′-dimensional points φ(x), without
explicitly computing φ(x) and then applying the sketch, as this would be too slow.

A specific example is the polynomial kernel of degree q, for which n′ = nq and φ(x)i1,i2,...,iq =
xi1 · xi2 · · ·xiq . The polynomial kernel is also often used for approximating more general functions
via Taylor expansion [17, 30]. Note that the polynomial kernel φ(x) can be written as a special type
of tensor product, φ(x) = x⊗ x⊗ · · · ⊗ x, where φ(x) is the tensor product of x with itself q times.

In this work we explore the more general problem of sketching a tensor product of arbitrary vectors
x1, . . . , xq ∈ Rn with the goal of embedding polynomial kernels. We will focus on the typical case
when q is an absolute constant independent of n. In this problem we would like to quickly compute
S · x, where x = x1 ⊗ x2 ⊗ · · · ⊗ xq , where S is a sketching matrix with a small number m of rows,
which corresponds to the embedding dimension.

The most naïve solution would be to explicitly compute x and then apply an off-the-shelf Johnson
Lindenstrauss transform S [25, 18, 28, 16], which using the best known bounds gives an embedding
dimension of m = Θ(ε−2 log(1/δ)), which is optimal [24, 27, 31]. However, the running time
is prohibitive, since it is at least the number nnz(x) of non-zeros of x, which can be as large as
nq. A much more practical alternative is TENSORSKETCH [34, 35] which gives a running time of∑q
i=1 nnz(xi), which is optimal, but the embedding dimension is a prohibitive Θ(ε−2/δ). Note that

for high probability applications, where one may want to set δ = 1/poly(n), this gives an embedding
dimension as large as poly(n), which since x has length nq = poly(n), may defeat the purpose of
dimensionality reduction.

Thus, we are at a crossroads; on the one hand we have a sketch with the optimal embedding dimension
with a prohibitive running time, and on the other hand we have a sketch with the optimal running
time but with a prohibitive embedding dimension. A natural question is if there is another sketch
which achieves both a small embedding dimension and enjoys a fast running time.

1.1 Our Contributions

1.1.1 Near-Optimal Analysis of Tensorized Random Projection Sketch

Our first contribution shows that a previously analyzed sketch by Kar and Karnick for tensor products
[30], referred here to as a Tensorized Random Projection, has exponentially better embedding
dimension than previously known. Given vectors x1, . . . , xq ∈ Rn in this sketch one computes the
sketch S · x of the tensor product x = x1 ⊗ x2 ⊗ · · · ⊗ xq where the i-th coordinate (Sx)i of the
sketch is equal to 1√

m
·
∏q
j=1〈ui,j , xj〉. Here the ui,j ∈ {−1, 1}n are independent random sign

vectors, and q is typically a constant. The previous analysis of this sketch in [35] describes the sketch
as having large variance and requires a sketching dimension that grows as n2q, as detailed in the
supplementary, in Appendix D.

We give a much improved analysis of this sketch in 2.1, showing that for any x, y ∈ Rnq

and
δ < 1/nq, there is an m = Θ

(
ε−2 log(n/δ) + ε−1 logq(n/δ)

)
for which Pr[|〈Sx, Sy〉 − 〈x, y〉| >

ε] ≤ δ. Notably our dimension bound grows as logq(n) rather than n2q, providing an exponential
improvement over previous analyses of this sketch. Another interesting aspect of our bound is
that the second term only depends linearly on ε−1, rather than quadratically. This can represent
a substantial savings for small ε, e.g., if ε = .001. Thus, for example, if ε ≤ 1/ logq−1(n), our
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sketch size is Θ(ε−2 log(n)) which is optimal for any possibly adaptive and possibly non-linear
sketch, in light of lower bounds for arbitrary Johnson-Lindenstrauss transforms [31]. Thus, at least
for this natural setting of parameters, this sketch does not incur very large variance, contrary to the
beliefs stated above. Moreover, q = 2 is one of the most common settings for the polynomial kernel
in natural language processing [2], since larger degrees tend to overfit. In this case, our bound is
m = Θ(ε−2 log(n) + ε−1 log2(n)), and the separation of the ε−2 and log2(n) terms in our sketching
dimension is especially significant.

We next show in 2.2 that a simple composition of the Tensorized Random Projection with a CountS-
ketch [14] slightly improves the embedding dimension tom = Θ(ε−2 log(1/(δε))+ε−1 logq(1/(δε))
and works for all δ < 1. Moreover, we can compute the entire sketch (including the composition
with CountSketch) in time O(

∑q
i=1m · nnz(xi)). This makes our sketch a "best of both worlds"

in comparison to the Johnson-Lindenstrauss transform and TensorSketch: Tensorized Random
Projection runs much faster than the Johnson-Lindenstrauss transform and it enjoys a smaller
embedding dimension than TensorSketch. Additionally, we are able to show a nearly matching
m = Ω(ε−2 log(1/δ) + ε−1 logq(1/δ)) lower bound for this sketch, by exhibiting an input x for
which ‖Sx‖2 /∈ (1± ε)‖x‖2 with probability more than δ.

It is also worthwhile to contrast our results with earlier work in the data streaming community
[23, 11] that analyzed the variance only for q = 2 and general q respectively, and then achieved high
probability bounds by taking the median of multiple independent copies of S. The non-linear median
operation makes the former constructs unsuitable for machine learning applications. In contrast,
we show high probability bounds for the linear embedding S directly. Recent work [4], which
was a merger of [5, 29], provide different sketches with different trade-offs. Their main focus is a
sketching dimension with a (polynomial) dependence on q, making it more suitable for approximating
high-degree polynomial kernels. Our focus is instead on improving the analysis of an existing sketch,
which is most useful for small values of q.

From a technical standpoint, our work builds off the recent proof of the Johnson-Lindenstrauss trans-
form in [16]. We write the sketch S as σTAσ, where in our setting σ corresponds to the concatenation
of u1,1, u2,1, . . . , um,1, while A is a random matrix which depends on all of u1,j , u2,j , . . . , um,j for
j = 2, 3, . . . , q. Following the proof in [16], we then apply the Hanson-Wright inequality to upper
bound the w-th moment E[|σTAσ − E[σTAσ]|w], for integers w, in terms of the Frobenius norm
‖A‖F and operator norm ‖A‖2 of the matrix A. The main twist here is that in the tensor setting,
when we try to apply this inequality, the matrix A is a random variable itself. Bounding ‖A‖2 can
be accomplished by essentially viewing A as a (q − 1)-th order tensor, flattening it q − 1 times,
and applying Khintchine’s inequality each time. The more complicated part of the argument is in
bounding ‖A‖F , which again involves an inductive argument to obtain tail bounds on the Frobenius
norm of each of the blocks of A, which itself is a block-diagonal matrix with m blocks. The tail
bounds are not as strong as sub-Gaussian or even sub-exponential random variables, which makes
standard analyses based on moment generating functions inapplicable. We instead give a “level-set”
argument by giving a novel adaptation of analyses of Tao, originally needed for showing concentration
of p-norms for 0 < p < 1, to our tensor setting (see, e.g., Proposition 6 in [36]).

1.1.2 Approximating Polynomial Kernels

Replicating experiments from [35], we approximate polynomial kernels using Tensorized Random
Projection, TensorSketch, and Random Maclaurin [30] features. In Section 4.1 we demonstrate that
TensorSketch always fails for certain sparse inputs, while Tensorized Random Projection succeeds
with high probability. We show in 4.2 that Tensorized Random Projection has similar accuracy to
TensorSketch, and both vastly outperform Random Maclaurin features.

1.1.3 Compressing Neural Networks

We also experiment with using Tensorized Random Projection to compress the layers of a neural
network. In [8], Arora et al. propose a method for compressing the layers of a neural network via
random projections and prove generalization bounds for such networks. To compress an individual
layer, they choose a basis set of random Rademacher matrices and project the layer’s weight matrix
onto this random basis set. We refer to this method here as Random Projection. The simplest, order
q = 2, Tensorized Random Projection can be viewed as a more efficient, rank-1 version of Random
Projection: instead of using a basis set of fully-random Rademacher matrices, the basis set is made
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up of random rank-1 Rademacher matrices. We show in 4.3 that Tensorized Random Projection
has similar test accuracy as Random Projection when compressing the top layer of a small neural
network.

1.2 Preliminaries

For a survey of using sketching for algorithms in randomized numerical linear algebra, we refer the
reader to [37]. We give a brief background here on several concepts related to our work.

There are many variants of the Johnson-Lindenstrauss Lemma, though for us the most useful is that for
an m× n matrix S of independent entries drawn from {−1/

√
m, 1/

√
m}, if m = Ω(ε−2 log(1/δ)),

then for any fixed vector x ∈ Rn, we have:

Pr
S

[‖Sx‖22 = (1± ε)‖x‖22] ≥ 1− δ.

This lemma is also known to hold for any matrix S with independent sub-Gaussian entries.

The matrix S is dense, and the CountSketch transform is instead much sparser.
Definition 1.1 (CountSketch). A CountSketch transform is defined to be Π = ΦD ∈ Rm×n. Here,
D is an n× n random diagonal matrix with each diagonal entry independently chosen to be +1 or
−1 with equal probability, and Φ ∈ {0, 1}m×n is an m× n binary matrix with Φh(i),i = 1 and all
remaining entries 0, where h : [n]→ [m] is a random map such that for each i ∈ [n], h(i) = j with
probability 1/m for each j ∈ [m]. For a matrix A ∈ Rn×d, ΠA can be computed in O(nnz(A)) time,
where nnz(A) denotes the number of non-zero entries of A.

We now define a tensor product and various sketches for tensors.
Definition 1.2 (⊗ product for vectors). Given q vectors u1 ∈ Rn1 , u2 ∈ Rn2 , · · · , uq ∈ Rnq , we use
u1 ⊗ u2 ⊗ · · · ⊗ uq to denote an n1 × n2 × · · · × nq tensor such that, for each (j1, j2, · · · , jq) ∈
[n1]× [n2]× · · · × [nq],

(u1 ⊗ u2 ⊗ · · · ⊗ uq)j1,j2,··· ,jq = (u1)j1(u2)j2 · · · (uq)jq ,

where (ui)ji denotes the ji-th entry of vector ui.

We now formally define TensorSketch:
Definition 1.3 (TensorSketch [34]). Given q vectors v1, v2, · · · , vq where for each i ∈ [q], vi ∈ Rni ,
let m be the target dimension. The TensorSketch transform is specified using q 3-wise independent
hash functions, h1, · · · , hq , where for each i ∈ [q], hi : [ni]→ [m], as well as q 4-wise independent
sign functions s1, · · · , sq , where for each i ∈ [q], si : [ni]→ {−1,+1}.
TensorSketch applied to v1, · · · , vq is then CountSketch applied to φ(v1, · · · , vq) with hash function
H : [

∏q
i=1 ni]→ [m] and sign functions S : [

∏q
i=1 ni]→ {−1,+1} defined as follows:

H(i1, · · · , iq) = h1(i1) + h2(s2) + · · ·+ hq(iq) (mod m),

and

S(i1, · · · , iq) = s1(i1) · s2(i2) · · · · · sq(iq).

Using the Fast Fourier Transform, TensorSketch(v1, · · · , vq) can be computed in O(
∑q
i=1(nnz(vi) +

m logm)) time.

The main sketch we study is the classic randomized sketch of a tensor product of q vectors
xi ∈ Rn. The i-th coordinate (Sx)i of the sketch is equal to

∏q
j=1〈ui,j , xj〉/

√
m, where ui,j

are independent random sign vectors. Kar and Karnick show [30] that if the sketching dimension
m = Ω(ε−2C2

Ω log(1/δ)), where CΩ is a certain property of the point set Ω one wants to sketch, then
with probability 1− δ, ‖Sx‖2 = (1± ε)‖x‖2 for all x ∈ Ω. However, in their analysis C2

Ω can be as
large as Θ(n2q), even for a set Ω of O(1) vectors x.

2 Main Theorem and its Proof

Our main theorem combining sketches S and T described in Sections 2.1 and 2.2 is the following.
We provide its proof in Section 2.3.
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Theorem 2.1. There is an oblivious sketch S · T : Rnq → Rm for m = Θ(ε−2 log(1/(εδ)) +
ε−1 logq(1/(εδ)), such that for any fixed vector x ∈ Rnq

and constant q, Pr[‖STx‖22 = (1 ±
ε)‖x‖22] ≥ 1− δ, where 0 < ε, δ < 1. Further, if x has the form x = x1 ⊗ x2 ⊗ · · · ⊗ xq for vectors
xi ∈ Rn for i = 1, 2, . . . , q, then the time to compute STx is O(

∑q
i=1 nnz(xi)m).

2.1 Initial Bound on Our Sketch Size

We are ready to present Tensorized Random Projection sketch S and the outermost layer of its analysis.
We defer statements and proofs of some key technical lemmas to Appendix A in the supplementary.
Note that both the sketching dimension m and the failure probability δ depend on n, which we later
eliminate with the help of Section B.

Theorem 2.2. Define oblivious sketch S : Rnq → Rm form = Θ(ε−2 log(n/δ)+ε−1 logq(n/δ)) as
follows. Choose m · q independent uniformly random vectors ui,j ∈ {+1,−1}n, where i = 1, . . . ,m
and j = 1, . . . , q. Let the ` = 1, . . . ,m-th row of S be (1/

√
m)u`,1 ⊗ u`,2 ⊗ · · · ⊗ u`,q, that is, the

(i1, i2, . . . , iq)-th entry of the `-th row of S is (1/
√
m)
∏q
j=1 u

`,j
ij

. Then for any fixed vector x ∈ Rnq

and failure probability δ < 1/nq it holds that Pr[‖Sx‖22 = (1± ε)‖x‖22] ≥ 1− δ.

Proof. It suffices to show for any unit vector x ∈ Rnq

, that

Pr[|‖Sx‖22 − 1| > ε] ≤ δ. (1)

We define Si ∈ Rm×nq−1

to have `-th row equal to (1/
√
m)u`,1i · v`, where v` = u`,2⊗u`,3⊗ · · ·⊗

u`,q , and define x = (x1, . . . , xn), with each xi ∈ Rnq−1

, so that Sx =
∑n
i=1 S

ixi. Then,

‖Sx‖22 = ‖
n∑
i=1

Sixi‖22 =

n∑
i=1

‖Sixi‖22 + 2
∑
i 6=i′
〈Sixi, Si

′
xi
′
〉.

Lemma 2.3 below proves that
∑n
i=1 ‖Sixi‖22 = (1±ε/3)‖x‖22 holds with probability at least 1−δ/10.

We prove Lemma 2.3 and in effect Theorem 2.2 by induction on q and applying Theorem 2.2 for
q′ = q − 1. To complete the proof, we need to show that that

∑
i 6=i′
〈Sixi, Si

′
xi
′
〉 ≤ ε/3 (2)

with probability at least 1 − 9δ/10. Note that (Sixi)`, the `th coordinate
of Sixi, is (1/

√
m)u`,1i 〈v`, xi〉. So showing (2) is equivalent to showing

1
m

∑
i 6=i′

∑m
`=1 u

`,1
i u`,1i′ 〈v`, xi〉〈v`, xi

′〉 ≤ ε/3. Rearranging the order of summation, we
need to upper bound

Z :=
1

m

m∑
`=1

∑
i6=i′

u`,1i u`,1i′ 〈v
`, xi〉〈v`, xi

′
〉 := uTAu,

where u ∈ Rnm×1 and A ∈ Rnm×nm is a block-diagonal matrix with m blocks, each of size n× n.

Let E be the event that
∑n
i=1 ‖Sixi‖22 = (1± ε/3). By Lemma 2.3, we have that Pr[E ] ≥ 1− δ/10.

Furthermore, let F be the event that ‖A‖2 = O( log(q−1)(qnqm/δ)
m ) and

‖A‖F = O(1/
√
m+ log1/2(1/δ) log(2q−3)/2(m/δ) log log(m/δ)/m)

bounds hold for the operator and Frobenius norm of A. By a union bound over Lemmas A.4 and A.7,
we have that Pr[F ] ≥ 1− δ/10. Lemma A.3 uses the Hanson-Wright Theorem to bound Z in terms
of ‖A‖2 and ‖A‖F and proves that Pr[Z ≥ ε/3|F ] ≤ δ/2.
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Putting this all together, we achieve our initial bound on ‖Sx‖22: Taking the probability over all u`

and v`, we have,

Pr[|‖Sx‖22 − 1| > ε] ≤ Pr[¬E ] + Pr[|‖Sx‖22 − 1| > ε | E ]

≤ δ/10 + Pr[Z ≥ ε/3 | E ]

≤ δ/10 +
Pr[Z ≥ ε/3]

Pr[E ]

≤ δ/10 +
Pr[Z ≥ ε/3]

1− δ/10

≤ δ/10 + (1 + δ/5) Pr[Z ≥ ε/3]

≤ δ/10 + (1 + δ/5)(Pr[Z ≥ ε/3 | F ] + Pr[¬F ])

≤ δ/10 + (1 + δ/5)(δ/2 + δ/10) = 3δ2/25 + 7δ/10

≤ 3δ/25 + 7δ/10 ≤ δ.

From the δ ≤ 1 assumption it follows that δ2 ≤ δ, which implies the second to last inequality and
concludes the proof.

Lemma 2.3. For all q ≥ 2, any set of fixed vectors x1, . . . , xn ∈ Rnq−1

, sketching dimension
m = Θ(ε−2 log(n/δ) + ε−1 logq−1(n/δ)), δ < 1/nq−1, and matrices Si ∈ Rm×nq−1

defined in the
proof of Theorem 2.2, we have that Pr[

∑n
i=1 ‖Sixi‖22 = (1± ε/3)‖x‖22] ≥ 1− δ/10.

Proof. Define matrix S0 ∈ Rm×nq−1

such that its `-th row is v`/
√
m from the proof of Theorem 2.2.

Additionally define m×m diagonal matrices Di such that Di
`,` := u`,1i . Note that Si = DiS0 and

therefore ‖Sixi‖2 = ‖DiS0x
i‖2 = ‖S0x

i‖2 holds since Di is ±1 diagonal matrix. To prove the
lemma, it is sufficient to show that

∀i ∈ [1, n] : Pr[‖S0x
i‖22 = (1± ε/3)‖xi‖22] ≥ 1− δ/(10n) (3)

holds, since then we have that
∑n
i=1 ‖Sixi‖22 =

∑n
i=1 ‖S0x

i‖22 = (1 ± ε/3)
∑n
i ‖xi‖22 = (1 ±

ε/3)‖x‖22 with probability at least 1− δ by a union bound.

We prove inequality (3) by induction on q. In the base q = 2 case, entries of v` = u`,2 vectors are
i.i.d. ±1 random variables. Equivalently the entries of S0 are i.i.d. ±1 random variables. Applying
the Johnson-Lindenstrauss lemma [31] to S0 and each xi with δ′ = δ/(10n) proves the base case.

Now assume that Theorem 2.2 holds for q′ = q− 1. Observe that the structure of S0 for q′ = q− 1 is
exactly like that of S for q. Setting δ′ = δ/(10n) in Theorem 2.2 we have that inequality (3) holds for
sketching dimensionm′ = Θ

(
ε−2 log(n/δ′) + ε−1 logq−1(n/δ′)

)
. Since log(n/δ′) = log(n2/δ) =

Θ(log(n/δ)) we can simplify m′ to Θ
(
ε−2 log(n/δ) + ε−1 logq−1(n/δ)

)
as claimed.

2.2 Optimizing Our Sketch Size

We define the sketch T , which is a tensor product of CountSketch matrices. We compose our sketch
S from Section 2.1 with T in order to remove the dependence on n. See Section B for the proof.
Theorem 2.4. Let T be a tensor product of q CountSketch matrices T = T 1 ⊗ · · · ⊗ T q, where
each T i maps Rn → Rt for t = Θ(q3/(ε2δ)). Then for any unit vector x ∈ Rnq

, we have
Pr[|‖Tx‖22 − 1| > ε] ≤ δ. Furthermore, if x is of the form x1 ⊗ x2 ⊗ · · · ⊗ xq, for xi ∈ Rn for
i = 1, 2, . . . , q, then Tx = T 1x1 ⊗ · · · ⊗ T qxq, where nnz(T ixi) ≤ nnz(xi) and where the time to
compute T ixi is O(nnz(xi)) for i = 1, 2, . . . , q.

2.3 Proof of Theorem 2.1

Finally we prove our main claim by composing sketches S and T from Sections 2.1 and 2.2.

Proof. Our overall sketch is S · T , where S is the sketching matrix of Section 2.1, with sketch-
ing dimension m = Θ(ε−2 log(t/δ) + ε−1 logq(t/δ)), and T is the sketching matrix of Sec-
tion 2.2, with sketching dimension t = Θ(q3/(ε2δ)). To satisfy the conditions of Theorem
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2.2, set δS = 0.5/tq. S is applied with approximation error ε/2 and failure probability δS
and T is applied with ε/2 and δ/2 respectively. Note that δS ≤ δ/2 and for q constant,
log(t/δS) = Θ(log(tq+1)) = Θ(log(t)) = Θ(log(1/(εδ))) holds. Thus, the sketching dimension m
of ST is now Θ(ε−2 log(1/(εδ)) + ε−1 logq(1/(εδ)), and has no dependence on n. By Theorems
2.2, 2.4, and a union bound, we have that for any unit vector x ∈ Rnq

, Pr[|‖S · Tx‖22 − 1| > ε] ≤ δ.

In Theorem 2.4 above we show that, if x is a vector of the form x1 ⊗ x2 ⊗ · · · ⊗ xq, for xi ∈ Rn
for i = 1, 2, . . . , q, then Tx = T 1x1 ⊗ · · · ⊗ T qxq where each T ixi can be computed in O(nnz(xi))
time and where nnz(T ixi) ≤ nnz(xi). Thus, we can apply S to Tx in O(

∑q
i=1 nnz(xi)m) time.

3 Lower Bound on Our Sketch Size

We next show that our sketching dimension of m = Θ(ε−2 log(1/(δε)) + ε−1 logq(1/(δε)) is nearly
tight for our particular sketch S · T . We will assume that q is constant. Note that S · T is an
oblivious sketch, and consequently by lower bounds for any oblivious sketch [24, 27, 31], one has
that m = Ω(ε−2 log(1/δ)). More interestingly, we show a lower bound of m = Ω(ε−1 logq(1/δ))
summarized in the following theorem; see Section C for the proof.

Theorem 3.1. For any constant integer q, there is an input x ∈ Rnq

for which if the number
m of rows of S satisfies m = o(ε−2 log(1/δ) + ε−1 logq(1/δ)), then with probability at least δ,
‖STx‖22 > (1 + ε)‖x‖22.

Recall that the upper bound on our sketch size, for constant q, is m = O(ε−2 log(1/(εδ)) +
ε−1 logq(1/(εδ))), and thus our analysis is nearly tight whenever log(1/(εδ)) = Θ(log(1/δ)).
This holds, for example, whenever δ < ε, which is a typical setting since δ = 1/poly(n) for high
probability applications.

4 Experiments

We evaluate Tensorized Random Projections in three different applications. In Section 4.1 we
show that Tensorized Random Projections always succeed with high probability while TensorSketch
always fails on extremely sparse inputs. Then in Section 4.2 we observe that TensorSketch and
Tensorized Random Projections approximate non-linear SVMs with polynomial kernels equally
well. Finally in Section 4.3 we demonstrate that Random Projections and Tensorized Random
Projections are equally effective in reducing the number of parameters in a neural network while
Tensorized Random Projections are faster to compute. To the best of our knowledge this comprises
the first experimental evaluation of [8]’s compression technique in terms of accuracy. The code for
the experiments is available at https://github.com/google-research/google-research/
tree/master/poly_kernel_sketch.

4.1 Success Probability of TensorSketch vs Tensorized Random Projection

In this section we demonstrate that TensorSketch cannot approximate the polynomial kernel κ(x, y) =
〈x, y〉q accurately for all pairs x, y ∈ V simultaneously if the vectors in the set V are not smooth,
i.e., if ‖x‖∞/‖x‖2 = Ω(1) holds for all x in V . TensorSketch fails even if the sketching dimension
m is much larger than |V |. On the contrary, Tensorized Random Projection works well.

Let a set S of data points be a standard basis in d dimensions. If k ≥ 2 coordinates of different vectors
collide in the same TensorSketch hash bucket then their common bucket is either zero or non-zero. If
it is 0, then 〈ei, ei〉q is incorrectly estimated as 0 instead of 1. If the common bucket’s value is not
0, then the estimate of 〈ei, ej〉q is non-zero, where i and j are any pair of two colliding coordinates.
Thus if there is a collision, then TensorSketch cannot estimate all dot products exactly. Moreover
the estimate cannot be close to the true kernel value either since if the dot product is incorrect, then
it is off by at least 1. Now if n ≥

√
2m ln(1/(1− p) then by the Birthday paradox [1] we have at

least one collision with probability p. If the number of vectors (and dimension) n is greater than the
sketching dimension m, which is the interesting case for sketching, then there is always a collision
by the pigeonhole principle. We remark that [26] provides a more detailed analysis of this sketching
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dimension vs input vector smoothness tradeoff for CountSketch, which is a key building block of
TensorSketch.

We illustrate the above phenomena in Figure 1(a) as follows. We fix the sketch size m = 100 and
vary the input dimension (= number of vectors) n along the x-axis. We measure the largest absolute
error in approximating κ(ei, ej) = 〈x, y〉2 = δij among the first n standard basis vectors and repeat
the experiment with 100 randomly drawn TensorSketch and Tensorized Random Projection instances.
The y-axis shows the average of the maximum error in approximating the true kernel, where error
bars correspond to one standard deviation. It is clear that TensorSketch’s error quickly becomes the
largest possible, 1, as the number n of vectors passes the critical threshold

√
100, while Tensorized

Random Projection’s max error is much smaller, more concentrated, and grows at a much slower rate
in the same setting.

(a) Max error vs input dimension (n) (b) Max error vs sketch size (m)

Figure 1: Maximum Error

Next, in Figure 1(b) we fix the input dimension (= number of vectors) to n = 100 and vary the sketch
sizem along the x-axis instead. The y-axis remains unchanged. We again observe that TensorSketch’s
max error decreases very slowly and it is still about 40% of the largest error possible (1) on average
at sketching size m = n2 = 104 � d. Tensorized Random Projection’s max error is almost an order
of magnitude smaller at the same sketch size.

4.2 Comparison of Sketching Methods for SVMs with Polynomial Kernel

We replicate experiments from [35] to compare Tensorized Random Projections with TensorSketch
(TS) and Random Maclaurin (RM) sketch. We approximate the polynomial kernel 〈x, y〉2 for the
Adult [19] and MNIST [32] datasets, by applying one of the above three sketches to the dataset. We
then train a linear SVM on the sketched dataset using LIBLINEAR [21], and report the training
accuracy. This accuracy is the median accuracy of 5 trials. Our baseline is the training accuracy of a
non-linear SVM trained with the exact kernel by LIBSVM [13]. We experiment with between 100
and 500 random features.

Both Figures 2(a) and 2(b) show that Tensorized Random Projection has similar accuracy to TensorS-
ketch, and both have far better accuracy than Random Maclaurin. Recall that Random Maclaurin
approximates the kernel function κ with its Maclaurin series. For each sketch coordinate it randomly
picks degree t with probability 2−t and computes degree-t Tensorized Random Projection. This
is rather inefficient for the polynomial kernel, which has exactly one non-zero coefficient in its
Maclaurin expansion. Random Maclaurin’s generality is not required for the polynomial kernel and
we can obtain more accurate results for general kernels by sampling degree t proportional to its
Maclaurin coefficient.

4.3 Compressing Neural Networks

We begin with a standard 2-layer fully connected neural network trained on MNIST [32] with a
baseline test accuracy of around 0.97. The first layer has dimension (784x512) and the top layer has
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(a) Adult dataset (b) MNIST dataset

Figure 2: Accuracy vs Number of Random Features

dimension (512x10). Further specifics of the model can be found in the TensorFlow tutorials [3].
We sketch the weight matrix in the top layer using either Tensorized Random Projection or Random
Projection. We then reinsert this sketched matrix into the original model and evaluate its accuracy on
the MNIST test set. We compare both the test accuracy and the time needed to compute the sketch
for both methods.

In Figure 3(a) we see that both Tensorized Random Projection and Random Projection reach similar
test accuracy for the same number of parameters. Figure 3(b) in illustrates that Tensorized Random
Projection runs somewhat faster than ordinary Random Projection.

(a) Test Accuracy vs Sketch Size (b) Time vs Sketch Size

Figure 3: Sketching the Last Layer of MNIST Neural Network

5 Conclusion

We presented a new analysis of Tensorized Random Projection, providing nearly optimal bounds and
demonstrated its versatility in multiple applications. An interesting question left for future work is
whether its m ·

∑q
i=1 nnz(xi) running time could be further improved for dense x. We conjecture

that the iid random u`i Rademacher vectors might be replaced with fast pseudo-random rotations,
perhaps a product of one or more randomized Hadamard matrices similar to ideas in [7], which could
possibly lead to an O(m log n) running time.
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