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Abstract
Functional precision oncology identifies promis-
ing treatments by conducting drug screens on
patient-derived tumor models, such as cell lines,
organoids, and mouse models. As the fidelity,
cost, and duration of these experiments depends
on the chosen model type, it is of great in-
terest to effectively utilize cheaper, faster, and
lower-quality experiments to inform potential
outcomes on costlier, slower, and higher-quality
experiments. In this work, we propose Bayesian
Modality Transfer (BMT), a Bayesian transfer
learning approach that leverages data from mul-
tiple modalities to make predictions on unseen
experiments. In simulation studies, we demon-
strate that BMT effectively transfers knowledge
between three cell line datasets conducted un-
der different experimental conditions and learns
to map between in vitro and in vivo modalities.
In a regime where data is scarce, we find that
the traditional approach of conducting experi-
ments independently would require an average
of 1.55- to 4.27-times as many experiments as
BMT.
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1. Introduction

Drug screening has become a key component of pre-
cision cancer medicine (Corsello et al., 2020; Basu
et al., 2013; Garnett et al., 2012; Lee et al., 2018; Gao
et al., 2015). Identifying promising drugs requires
running a progression of experiments which increase
in both fidelity and duration. For example, candidate
drugs may be first tested against 2D cell lines, then
3D patient-derived organoids, and finally in patient-
derived xenografts or genetically engineered mouse
models. A crucial question is how to select experi-

ments to run in later stages, as inefficiency can be
cost and time prohibitive. Our goal is to build a ma-
chine learning model that enables integration of pre-
vious experiments in the same or earlier stages and
predicts drug response in future stages. A challenge
is that drug response is not always consistent across
stages: a drug which succeeds in an earlier stage may
fail in a later stage, and vice versa. Even within the
same stage, results can vary substantially between
labs due to change in experimental conditions and
natural variation (Errington et al., 2021).

In this paper, we apply a transfer learning ap-
proach: we use a source dataset S from an earlier
study or stage and a target dataset T from the current
study. The goal is to combine these two datasets to
make predictions on unseen experiments in the later
stage. Transfer learning has been successfully applied
in a variety of contexts, including RNA feature-based
neural networks to transfer predictions from cell lines
to PDX models (Ma et al., 2021). In this work, we ex-
tend the reach of transfer learning to drug screening
settings that are lacking in genomic information.

We propose Bayesian Modality Transfer (BMT), a
lightweight, multi-view transfer model, which is ag-
nostic to any biological, chemical, or genomic prop-
erties of the data. We benchmark BMT on a panel
of cell line studies conducted in three different ex-
perimental settings. We find that BMT significantly
improves prediction on all three cell line datasets
which we study. In a regime where data is scarce,
we find that the traditional approach of conducting
experiments independently would require an average
of 1.55- to 4.27-times as many experiments as BMT.

We then apply BMT to a study on 12 matched
patient-derived organoids (PDOs) and xenografts
(PDXs) where the raw data show no correlation on
average between the two modalities, suggesting a
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need to conduct expensive in vivo PDX experiments
for every organoid. Even though the study involves
only 108 experiments for each modality, BMT learns
an effective transfer mapping, achieving a substantial
improvement in Pearson correlation from the baseline
average of 0.05 to an average of 0.22 and as high as
0.66.
Taken together with the efficiency gains BMT

achieves on cell line drug response studies, these re-
sults suggest transfer learning has the potential to
substantially reduce the cost and time burden of the
precision medicine pipeline.

Further related work. Tang et al. (2022) use a
transfer learning model incorporating molecular and
genomic information to predict PDX response from
cell line data. Mourragui et al. (2021) build a trans-
fer learning system using cell line and PDX drug re-
sponse data to predict patient response. Many mod-
els use machine learning to predict cell line drug re-
sponse, (Liu et al., 2020; Chiu et al., 2019; Yuan
et al., 2016; Adam et al., 2020). Pan and Yang (2009)
and Weiss et al. (2016) survey transfer learning.

2. Model

Suppose there are patient samples i = 1, . . . , n and
drugs j = 1, . . . ,m. Let S be an n×m matrix where
Sij is the response of sample i to drug j in the source
dataset. Let T be an n ×m matrix where Tij is the
response of sample i to drug j the target dataset. A
sample imay be tested against only a subset of drugs,
so S and T may be sparse.
To model this data, we introduce a Bayesian

transfer-learning normal factorization model. Fix
k ∈ N. Each sample i is governed by a k-dimensional
latent vector ci, and each drug j is governed by a k-
dimensional latent vector dj . We model the response
of sample i to drug j in the source dataset as

Sij ∼ N (cTi dj + α, σ2
s),

where α and σs are constant across all samples i and
drugs j.
Recall that our goal is to model a mapping from the

source dataset to the target dataset. We encode this
mapping as a k × k latent matrix W . We model the
response of sample i to drug j in the target dataset
as

Tij ∼ N ((Wci)
T dj + α′, σ2

t ),

where α′ and σt are constant across all samples i and
drugs j. We define W as the product of two k × k

matrices U and V , indexed by r and l. We index em-
bedding vectors ci and dj by l and place hierarchical
Gaussian priors on the embeddings and fixed effects.

α ∼ N (0, σ2
α) , α′ ∼ N (0, σ2

α′) , djl ∼ N (0, σ2
d) ,

cil ∼ N (0, σ2
c ) , Url ∼ N (0, σ2

w) , Vrl ∼ N (0, σ2
w) ,

We specify Gamma(0.1, 0.1) priors for all σ variance
parameters. The model is fit with black box varia-
tional inference in the Pyro python package. The em-
bedding dimension k is chosen via cross-validation.

3. Simulation studies

For each experiment, we choose a source dataset S
and a target dataset T . We hold out H ⊂ T . The
training set comprises S and T \H. We measure per-
formance by computing the sample Pearson correla-
tion coefficient of the maximum a posteriori (MAP)
estimate and the held out set H.

3.1. Experiment 1: Predicting in-vitro
response

We benchmark our model against three pan-cancer,
cell line datasets, GDSC (Garnett et al., 2012),
PRISM (Corsello et al., 2020), and CTD2 (Basu
et al., 2013), which share 318 cell lines, 84 drugs,
and 16,588 experiments. Each study tests cell lines
against drugs at a range of doses and provides the
percent-viablity curve (AUC). Dose ranges vary
across the three datasets, so Corsello et al. (2020)
compute the area under the percent-viability curve
restricted to a single overlapping dose range (AUC∩).
We define Sij to be the log(AUC) for cell line i
against drug j in the source dataset, and Tij to be
the log(AUC) of cell line i against drug j in the tar-
get dataset. We averged AUC values for experiments
with multiple entries.

We begin by choosing a source dataset S and a
target dataset T from PRISM, GDSC, and CTD2.
We run the following experiment on each of the

(
3
2

)
=

6 possible choices.

Experimental Setup. We partition the cell lines
into 10 sets L = 1, . . . , 10. Using these sets, we parti-
tion T into 10 cross-validation folds F1, . . . , F10, such
that for each set L, we define fold FL = {(i, j, Tij) :
i ∈ L}, which consists of all data involving cell lines
in L. We choose k via 5-fold cross-validation. The
final model is chosen by optimizing over 5 random
restarts with the target training loss as the objective.
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Figure 1: BMT incorporates data from a source dataset and a target dataset to significantly increase the
accuracy of predictions in the target setting. S → T indicates S is the source dataset and T is the
target dataset.

Baseline. We compute the Pearson correlation co-
efficient of the AUC∩ values in H and their corre-
sponding AUC∩ values in the source dataset, a com-
parison used by Corsello et al. (2020).

Evaluation and results. As shown in Figure 1,
BMT significantly increases the Pearson correlation
coefficient for each combination of datasets (Mann-
Whitney U-test; p = 0.00361 for (GDSC, CTD2) and
p = 0.00018 for all other pairs). Relative to the base-
line, BMT enjoys an average improvement in accu-
racy ranging from 8% to 41%.

3.2. Experiment 2: Comparing BMT to a
model given access to only the target

We compare BMT to a model given access to only the
target dataset, which we call the target-only model.

Defining the target-only model. Fix k ∈ N.
Each sample i is governed by a k-dimensional vec-
tor c̃i and each drug is governed by a k-dimensional
vector d̃j . We model the response of sample i to drug
j in the target dataset as

Tij ∼ N (c̃i
T d̃j + α̃, σ̃2),

where α̃ and σ̃ are constant over all samples i and
drugs j. The target-only model is fit via the same
process as BMT. The full generative model is found
in Appendix A.

Experimental set-up. We begin by choosing a
source dataset S and a target dataset T from PRISM,

GDSC, and CTD2. We select a γ-fraction of exper-
iments uniformly at random to comprise the target
training set (i.e. T \H). Following the same proce-
dure as in Experiment 1, BMT is fit on S and T \H
and the target-only model is fit on T \H. We run this
process 10 times for each γ ∈ {5%, 10%, 15%, 20%}.

Evaluation and results. For a holdout set H, for
a given γ, we interpolate the fraction of target data
γ′ required by target-only to match the accuracy of
BMT. We call γ′/γ the efficiency gain.

Figure 2 reports efficiency gains in the small-data
regime. For γ = 5%, relative to the target-only
model, BMT achieves mean efficiency gains ranging
from 1.89 to 4.27. Given that there are 16,588 exper-
iments total, this implies that the target-only model
requires approximately 738 to 2,712 additional exper-
iments to achieve similar respective accuracy. Effi-
ciency gains decrease as γ increases, and for γ = 20%
BMT achieves mean efficiency gains ranging from
1.55 to 2.02. Therefore for γ = 20% the target-only
model requires an additional 1,825 to 3,384 experi-
ments to achieve similar respective accuracy.

3.3. Experiment 3: Predicting in-vivo
response

Schütte et al. (2017) study colorectal cancer PDOs
and PDXs. They tested PDOs against drugs at con-
centrations ranging from 3.05nM to 60µM and tested
PDXs in mouse models for 4 weeks. We study a sub-
set of this dataset that includes 12 patient samples
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Figure 2: In the small-data regime, the traditional approach of conducting experiments independently would
require 1.55- to 4.27-times as many experiments as BMT on average. S → T indicates S is the
source dataset and T is the target dataset. ρs is Spearman’s correlation coefficient.

each tested against the same 9 drugs, resulting in 108
observations in each of the PDO and PDX settings.
The study provided IC50 measurements for PDO
samples, so we computed Sij as the log10(IC50). The
study provided tumor volumes for both control and
treated PDX samples, so we calculated Tij as the ra-
tio of the treatment volume and the control volume
at 4 weeks.

Experimental set-up. We split the data into 12
cross-validation folds such that each fold contains all
data points corresponding to a single sample. The
remainder of the experiment follows the same proce-
dure as Experiment 1, except that k is chosen from
{1, 2, . . . , 9}. We compare BMT predictions to the
Pearson correlation coefficient between H and the
raw source data.

Evaluation and results. Figure 3 reports our re-
sults. A Mann-Whitney U-test shows that BMT in-
creases the Pearson correlation coefficient (p = .026)
from 0.05 to 0.22. Across the entire dataset, 83% (10
/ 12) of PDXs saw an improvement from using the
BMT transfer predictions instead of the raw PDO
results.

Figure 3: BMT learns to map between PDO and
PDX modalities on a study of 12 matched
PDOs and PDXs with 108 experiments
in total for each modality. Relative to
the baseline mean of 0.05, BMT increases
the mean Pearson correlation coefficient to
0.22.
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Appendix A. Supplement

Data Availability. All datasets studied are pub-
licly available.

Defining the target-only model in full. Fix k ∈
N. Each sample i is governed by a k-dimensional vec-
tor c̃i and each drug is governed by a k-dimensional
vector d̃j . We model the response of sample i to drug
j in the target dataset as

Tij ∼ N (c̃i
T d̃j + α̃, σ̃2),

where α̃ and σ̃ are constant over all samples i and
drugs j.
We index embedding vectors ci and dj by l and

place hierarchical Gaussian priors on the embeddings
and fixed effects.

α̃ ∼ N (0, σ̃2
α) , d̃jl ∼ N (0, σ̃2

d) , c̃il ∼ N (0, σ̃2
c ) ,

We specify Gamma(0.1, 0.1) priors for all σ variance
parameters. The model is fit with black box varia-
tional inference in the Pyro python package. Param-
eter k is chosen via cross-validation.
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