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Abstract
Contact tracing is a key tool for managing epidemic diseases like HIV, tuberculosis, COVID-19, and monkeypox. Manual investigations by 
human-contact tracers remain a dominant way in which this is carried out. This process is limited by the number of contact tracers 
available, who are often overburdened during an outbreak or epidemic. As a result, a crucial decision in any contact tracing strategy 
is, given a set of contacts, which person should a tracer trace next? In this work, we develop a formal model that articulates these 
questions and provides a framework for comparing contact tracing strategies. Through analyzing our model, we give provably optimal 
prioritization policies via a clean connection to a tool from operations research called a “branching bandit”. Examining these policies 
gives qualitative insight into trade-offs in contact tracing applications.
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Significance Statement

Mathematical models have long played a crucial role in epidemiology, however far fewer models for contact tracing exist. During an 
epidemic or outbreak, contact tracers often overwhelmed with cases to investigate, and as a result, must strategically choose which 
cases to investigate first. We develop a mathematical model of contact tracing which articulates this decision-making process, and 
using this model, we are able to analyze trade-offs in prioritization policies for contact tracing.

Introduction
Mathematical models have provided many useful frameworks to 
epidemiology. For example, branching processes inspired the R0 

metric used to describe the growth of a disease, and compartmen
tal models help to describe the process through which disease 
spreads (1). These stylized models complement empirical re
search in public health by providing a framework for modeling 
the spread of disease. While there is an abundance of mathemat
ical models for the spread of infection, far fewer models exist for 
contact tracing. Our goal in this paper is to provide an initial 
framework for formalizing the contact tracing process.

Contact tracing, the process of identifying individuals ex
posed to an infected case of a disease, is a key tool for managing 
epidemic diseases like HIV, tuberculosis, COVID-19, and mon
keypox (2–7). Once a contact is identified, they may undergo 
testing, quarantine, or medical treatment. Identifying infected 
contacts soon after exposure mitigates the impact of disease 
on multiple fronts: quarantining cases is crucial to limiting the 
disease’s spread (8–12), and early initiation of treatment is asso
ciated with positive health outcomes such as shorter hospital 
stays and lower mortality (13–19).

Manual investigations by human contact tracers remain a dom
inant way in which contact tracing is carried out. Typically, a team 
of contact tracers work together to interview infected cases and fol
low up with contacts, tasks which are often arduous and time- 
consuming (20, 3). To simplify things, we consider the workflow 
of a single tracer tasked with investigating a set of contacts. The 
tracer iteratively chooses an individual from the set to query. 
When an individual is queried, they are tested for infection; if 
they are infected, they receive medical treatment and list their con
tacts, which are then added to the set. Since the contact tracing 
process is limited by the number of tracers available, during an out
break or epidemic there may not be resources to query each contact 
immediately. Therefore, an important strategic decision is, which 
contact should the tracer query next? For example, for an easily 
transmissible respiratory disease like COVID-19, a tracer may pri
oritize querying a clerk at a grocery store over a writer working 
from home, as the clerk likely interacts with many more people 
each day than the writer. As different diseases have different vec
tors of transmission, these trade-offs change in other settings.

Deciding which contact to query next quickly becomes com
plex, since each query a tracer makes has downstream effects. 
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As illustrated in Fig. 1, suppose an infected case A exposed con
tacts B and C. If B became infected, they exposed D and E, and 
if C became infected they exposed F, G, and H. Upon querying 
A, the tracer only has access to first-generation contacts B and 
C and must decide which one to query next. Querying B opens 
up the possibility of querying second-generation contacts D 
and E, whereas querying C gives access to F, G, and H. Thus, 
the decision whether to query B or C first affects the options 
available going forward.

Many other factors, such as the probability a contact is in
fected, their risk of infecting others, and the recency of their ex
posure affect these choices, and tracers often trade-off between 
these different factors when deciding which contact to query 
next. To guide this decision-making, groups like the WHO and 
the CDC develop detailed recommendations for conducting con
tact tracing investigations (3, 2, 12, 21–24). A primary aim of these 
guidelines is to synthesize these trade-offs into a decision-making 
protocol for tracers to follow. The complexity of this process is em
phasized in the CDC’s Guidelines for Investigations of Contacts with 
Infectious Tuberculosis. 

Contact investigations are complicated undertakings that typical

ly require hundreds of interdependent decisions, the majority of 

which are made on the basis of incomplete data, and dozens of 

time-consuming interventions. (3)

Protocols for prioritizing contacts typically take the form of a 
flow-chart or matrix that assigns contacts to different groups 
and then dictates the order in which these groups ought to be 
queried. Often multiple criteria are considered when categorizing 
contacts. In many cases, two of the most important factors are the 
probability that a contact is infected and the recency of their 
exposure.

Despite the fact that the importance of these factors is well 
understood, agencies still have difficulty managing these trade- 
offs, which is not without cost. During a 2017 HIV outbreak in 
West Virginia, contact tracers in the West Virginia Department 
of Health and Human Resources were overwhelmed by the surge 

in cases. In such a situation, CDC guidelines recommend inter
viewing contacts associated with clusters of infections, who may 
be at high risk of infection (2). However, the contact tracers had 
no means of adjusting the order in which they investigated cases 
to respond to the outbreak. 

[T]here was no supervisory triage system to respond to a cluster of 

HIV infections. As a result, [contact tracers] would investigate 

cases linearly—prioritizing index case investigations over investi

gating contacts within clusters—and did not have the flexibility to 

shift their priorities based on the identification of an ongoing HIV 

cluster. (25)

Given the importance of identifying infected cases quickly, 
both with respect to preventing future infections and initiat
ing medical treatment early, delays like this may cause real 
harm.

Even in the numerous cases where an agency has an effective 
method of prioritization, there are subtleties to how these prior
ities are chosen (21, 23). For example, the protocol for COVID-19 
contact tracing developed by the North Carolina Department of 
Health and Human Services prioritizes contacts by recency of ex
posure, with one exception: contacts associated with a cluster or 
outbreak of infections are prioritized first, regardless of when 
they were exposed (22). By clearly dictating when to shift priorities 
in an investigation, this protocol addresses the issues presented in 
the West Virginia case. Yet many questions still remain. How are 
these priorities chosen? How do these tools translate to different 
settings? How might priorities change with slightly different fac
tors or as parameters change? Is there even a way to ask these 
sorts of questions?

In this work, we develop a formal model that articulates 
these questions and provides a framework for comparing con
tact tracing strategies. Through analyzing our model, we give 
provably optimal prioritization policies via a clean connection 
to a tool from operations research called a “branching bandit” 
(26). Examining these policies gives qualitative insight into 
trade-offs in contact tracing applications. The model we study 
has two phases: first an infection spreads within a population; 
then the infection process halts and a contact tracing interven
tion begins. Of course, contact tracing is an extremely complex 
process requiring nuance and domain expertise, and there are 
many factors which this stylized model cannot capture—for 
example, the dynamics of contact tracing while a disease is 
still spreading, which we explore in forthcoming work (27). 
Yet this two-phase model already exposes trade-offs and ques
tions about prioritization, decision-making, and resource allo
cation, which not only seem important in their own right, but 
also seem prerequisite to understanding more complex 
settings.

Paper organization
First, in “Further related work”, we discuss relevant work from the 
contact tracing, operations research, and computer science liter
atures. Then in “Example” we present an example to illustrate 
the trade-offs at play in contact tracing. In “Model” we present 
our formal model, and in “Overview of results” we give an over
view of our results for the four models we consider. The remaining 
“Basic model” and Sections 6–8 present each of the four models, 
their optimal policies, and the analysis of these policies. Finally, 
we discuss a few compelling directions for future work in 
“Discussion.”

Fig. 1. Manual contact tracing begins with an index case (A), after which 
further contacts are revealed. Contact tracing proceeds recursively, 
where the tracer must decide the order in which to investigate contacts, 
with different orderings yielding different rewards.
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Further related work
Work closest to ours focuses on comparing contact tracing pol
icies and the question of “who to trace.” Specifically, Armbruster 
and Brandeau consider a network model where a tracer with lim
ited capacity must decide at each step which contact to trace next. 
In (28) via simulation they evaluate three different policies for pri
oritizing contacts. Using the best of these three policies, in (29), 
they describe the trade-offs between investing in such a contact 
tracing effort versus directing funding toward other interventions. 
Tian et al. (30) also consider a network model where they evaluate 
a set of contact tracing strategies targeted at various subgroups 
within a population. Among compartmental models, Hethcote 
et al. evaluate sets of targeted contact tracing strategies in (31), 
and Eames considers targeted tracing for different population 
structures in (32). Our results differ from this prior work in that 
we provide provably optimal contact tracing policies, as opposed 
to evaluating a set of specified policies or strategies.

The importance of developing prioritization strategies for con
tact tracing under resource constraints is highlighted in recent 
surveys (33, 34). Kaplan et al. consider tracing under resource con
straints as well, however in a somewhat different setting (35, 36). 
There have also been many studies evaluating under what condi
tions contact tracing is effective and when a disease can be con
trolled via tracing (37, 38, 11, 39, 5). In (40), Müller et al. analyze 
a branching process model and compare the fraction of contacts 
traced to the effective reproduction number.

Digital contact tracing is surveyed in (41). Our work focuses on 
contact tracing carried out by human tracers and is orthogonal to 
digital contact tracing apps. In the digital setting, Lunz et al. de
velop optimal policies for deciding how to quarantine contacts 
of infected individuals, where some fraction of contacts can be 
traced by digital means (42).

Within the operations research and computer science litera
tures, our work is most closely related to search problems on trees 
that do not have clear connections to contact tracing, but which 
use similar techniques. The problem closest to our work is the 
tree-constrained Pandora’s Box problem studied in (43), which 
also analyzes stochastic selection on a tree, but which involves 
a fairly different objective. Another related problem is stochastic 
probing with constraints (44). While our model of contact tracing 
involves a tracer operating on a tree, it is quite different from the 
minimum latency problem on weighted trees (45) in that the trac
er does not physically travel to the individuals they trace. Finally, 
our model formulation can be viewed as falling under the general 
class of Markov decision processes, but the key is that it falls 
under the specific class of branching bandit problems, which 
leads to an efficient solution.

Example
We begin with an example that illustrates the trade-offs at play in 
prioritizing contacts. Suppose an infection spreads in a population 
over the course of two days,a after which the infection halts and 
contact tracing begins. Specifically, over the course of two days 
each individual in a population meets one new contact each day 
with probability q ∈ (0, 1], and infected individuals probabilistically 
infect each new person they meet. The following events take place: 

• On day t = −2, w is infected with probability pw.
• On day t = −1, with probability q, w meets x and if w is infected 

they infect x with probability px.

• On day t = 0, with probability q, w meets y and if w is infected 
they infect y with probability py.

• On day t = 0, with probability q, x meets z and if x is infected 
they infect z with probability pz.

• After day t = 0, the community goes into lockdown and no new 
infections occur.

Now consider a contact tracer working to discover infected cases. 
On day t = 0, the tracer finds that w is infected and learns that they 
met x on day t = −1 and also met y on day t = 0.

Going forward, on each day t ≥ 1 the tracer chooses one individ
ual to query. When an infected individual is queried, they receive 
medical treatment and their contacts become available to query 
in the future. Querying an individual infected for τ days returns 
benefit 2−τ+1, which represents the probability they respond to 
treatment.b Querying an uninfected individual returns benefit 0. 
Each individual may be queried at most once. The tracer’s object
ive is to maximize the total benefit accumulated. Since x was ex
posed to w on day tx = −1, the tracer knows that x may have met 
another contact (arbitrarily called z) on day t = 0, however they 
have no way of accessing z (or even knowing if z exists) before 
querying x. Since y was exposed on day ty = 0, the tracer knows 
that y met no further contacts.

The question is, which contact should the tracer query first, x or 
y? Querying x potentially grants access to z, however y was ex
posed more recently than x, so if y is infected it returns a higher 
benefit. Fig. 2 shows the benefit of different ways in which the 
tracer can operate, numerically evaluated for two different par
ameter settings.

This simple example already highlights a few crucial points we 
explore in this work. For one, querying the node with the higher 
expected immediate benefit is not always optimal. This lack of a 
simple rule might at first seem to imply that a contact tracer work
ing in this synthetic model would need to calculate the expected 
benefit of each possible ordering in order to identify the optimal 
choice.

In fact this is not the case. Via a dynamic programing approach 
we provide optimal policies for querying individuals that are com
puted before contact tracing begins and which are straightfor
ward to implement: a “priority index” is computed for each 
individual, and at each step the contact tracer queries the individ
ual with the highest priority index.

Model
Modeling a contact tracing process involves a few different ingre
dients. People need to meet and make new contacts, through 
these interactions the infection needs to spread to some individu
als and not others, and finally, we need a way of identifying in
fected individuals and their contacts. Similar to previous models 
of infection, such as branching processes, a tree forms the basis 
of our model.

We develop a model with two phases. Phase 1 spans steps −T ≤ t 
≤ 0 and involves a contact process, which describes how people 
meet new contacts, and an infection process, which describes 
how the infection spreads through these interactions. At the end 
of Phase 1, the contact and infection processes halt, and from 
then on no new infections occur. Phase 2 begins on step t = 0 
and continues indefinitely. At the start of Phase 2, a set of index 
cases are identified. We define an index case as an individual 
that is exposed to infection and becomes infected according to a 
probability function p. We are agnostic to the origin of the index 
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cases; for example, an index case may have been identified via 
surveillance testing, another contact tracing effort, or random 
chance. Starting with the index cases, on each step t ≥ 0 a contact 
tracer, simply called a tracer, selects one individual to query. 
Querying an individual models the traditional test-and-trace pro
cess: it reveals the individual’s infection status, and if they are in
fected it reveals their contacts; these contacts may then be 
queried on future steps. When an infected individual is queried, 
they also receive medical treatment for the disease. For the re
mainder of the second phase, the tracer iteratively queries indi
viduals with the goal of identifying infected cases as efficiently 
as possible.

We show that this two-phase model already requires delicate 
analysis, and we leave open the problem of analyzing concurrent 
infection and tracing processes. We hope that our framework can 
serve as a first step toward more complex models of contact 
tracing.

Phase 1
Phase 1 spans steps t = −T to t = 0. During this phase, individuals 
meet new contacts and the infection spreads through these 
interactions.

Let D be an arbitrary distribution on {0, 1, 2, …}. On each step 
each individual meets a random number of contacts Z ∼ D, where 
Z is drawn independently for each individual at each step. If an in
dividual is infected, they infect each new contact they meet inde
pendently according to a probability function p defined separately 
for each model we consider. We call these contacts exposed. 
Exposed individuals are labeled by the recency of their exposure: 
an individual exposed at time t = −h has recency h. Since Phase 1 
spans steps t = −T to t = 0, exposed individuals have recencies in 
{0, 1, …, T}. We assume that an individual’s recency can be ob
served but their infection status is hidden.

Step t = 0:
At the end of step t = 0 the contact and infection processes halt, 
and from then on no new infections occur.

To understand the system on step t = 0, consider an individual v 
exposed on step t = −h in Phase 1. If v becomes infected, then for 
each step h − 1 ≤ t ≤ 0 in the remainder of Phase 1, v exposes 
Zt ∼ D individuals. Then by the end of step t = 0, v has exposed a 
multiset of contacts Z(h) = (Z0, Z1, …, Zh−1) ∼ Dh where Zj indicates 
the number of contacts of recency j. Thus, we can model v as the 
root of a tree, where the nodes in the first layer represent the con
tacts v met after being exposed, the nodes in the second layer re
present contacts individuals in the first layer met after meeting v, 
and so on. We call this a tree of potential exposures because there is a 
path of contacts from v to each individual in the tree along which 
the infection could potentially travel. Since the distribution D on 
contacts is fixed, v’s recency h(v) determines the distribution on 
the tree of potential exposures. We often refer to the nodes in 
the tree of exposures as v’s descendants.

We call the probability that an exposed node is infected the 
probability of infection. In the first model, we examine, the probabil
ity of infection is constant. In the second model, the probability of 
infection depends on the node’s recency as defined by a function 
p(h). Either way, for both models a node’s recency contains all the 
information needed to determine its probability of infection and 
the distribution on its tree of exposures. In the third model, we 
consider, the probability of infection depends both on the node’s 
recency and the recency of its parent. Going forward, we use the 
terms “node” and “individual” interchangeably.

Phase 2
Phase 2 begins on step t = 0 and continues indefinitely. Throughout 
Phase 2, an individual’s infection status is fixed but hidden. During 
this phase, a contact tracing effort proceeds.

Fig. 2. In a mathematical model of contact tracing, the tracer knows the probability of infection for each contact and needs to choose an ordering for 
investigating contacts. As we show in this paper’s main results, there is an efficient algorithm to decide an optimal ordering.
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Contact tracing begins on step t = 0 when a set of index cases 
are identified. From then on, at each step t ≥ 0 the tracer selects 
one node to query. Querying a node reveals its infection status, 
and if it is infected reveals the node’s children along with the re
cency of each child. These children may then be queried on future 
steps. We assume that nodes of the same recency are indistin
guishable until they are queried.

On step t = 0, the index cases are the only individuals available 
to query. The contact tracer observes the recency of each index 
case but has no information about any other individuals in the 
population. For the remainder of Phase 2, the tracer may only 
query a node that is an index case or the child of an infected 
node queried on an earlier step. Equivalently, we can view each in
dex case as the root of a tree of potential exposures, which to
gether form a forest. Through this query process, the tracer 
maintains a sub-forest where any leaf not already queried is either 
a root or the child of an infected node. These leaves form the fron
tier, and each step the tracer selects one node to query from the 
frontier. Observe that, by definition, each node in the frontier 
was exposed to infection in Phase 1.

To understand this process further, consider the options avail
able to the tracer each step. Since nodes of the same recency are 
indistinguishable until they are queried, the system on any step 
t ≥ 0 is defined by a multiset St = (X0, X1, …, XT), where Xj indicates 
the number of nodes of recency j present in the frontier. We call St 

the state on step t. We use both notions of a multiset when refer
ring to states; i.e. St can be viewed as a collection of elements or as 
a vector of counts.

Querying an infected node v returns a benefit, which represents 
the probability that v responds to medical treatment. The benefit 
of querying an infected node decays relative to the duration of the 
infection and depends on the node’s recency h(v) and the step t it is 
queried, as defined by a function b(h(v), t). The benefit of querying 
an uninfected node is 0, and each node may be queried at most 
once. The tracer’s objective is to maximize the total expected 
benefit returned over the course of Phase 2.

Defining the objective
On each step t ≥ 0, the tracer selects a node vt to query. Since the 
tracer only selects nodes from the frontier, by definition the 
node vt was exposed to infection in Phase 1. Let 1(vt) indicate 
whether vt is infected (1) or uninfected (0). If vt is infected, then 
benefit b(h(vt), t) is returned. Thus the total benefit the tracer accu
mulates over the course of Phase 2 is

􏽘

t≥0

1(vt) · b(h(vt), t).

The main objective is to develop a policy for querying nodes that 
maximizes the total expected benefit, where the expectation is 
taken over all realizations {1(v0), 1(v1), 1(v2), . . . }. Such a policy is 
called an optimal policy. In order to make this problem tractable, 
like many other stochastic models we assume exponential dis
counting. Specifically, the benefit of querying a node infected for 
τ steps is e−βτ for a fixed parameter β > 0.c

Overview of results
Our results can be summarized in three main contributions.

1) Constructing optimal policies.
We show how to construct an optimal policy for any instance of 
our model. These policies have a special property: for any instance 

of our model, the optimal policy can be described by an algorithm 
that assigns each node a “type”, computes an index based on the 
type, and chooses the node of the highest index. Such a policy is 
called an index policy.d An index policy is efficiently computable 
if each individual index can be computed in polynomial time. 
For any instance of our model, we show how to compute an opti
mal policy that is an efficiently computable index policy. We prove 
this result in Section 8.

We can interpret this result in the context of the contact tracing 
protocols discussed in the Introduction. Recall that many contact 
tracing protocols assign individuals to groups and then dictate the 
order in which groups ought to be queried. Since our construction 
computes indices from types, the resulting index policy induces a 
fixed priority ordering on types. Mapping individuals to nodes and 
groups to types, our results imply that, for our model, (1) the opti
mal policy overall is defined by a priority ordering on groups, and 
(2) this priority ordering has an explicit, efficient construction. It is 
important to note that, taken on its own, this result does not expli
citly describe any policies, and it makes no guarantees about the 
structure of an optimal policy beyond the promise that it is an in
dex policy. Describing the structure of optimal policies any further 
requires analyzing the construction itself.

2) Analyzing optimal policies for different models 
of infection.
We examine three different versions of our model, each corre
sponding to a different model of infection. Analyzing the con
struction of optimal policies in each model gives qualitative 
insight into questions about prioritizing contacts from the 
Introduction, such as how to trade-off between an individual’s 
probability of infection, the recency of their exposure, or the num
ber of other contacts they may have exposed. The three versions 
we examine are identical except for a function defining the prob
ability of infection. First we examine a basic model, where the 
probability of infection is constant, then we examine a univariate 
model, where the probability of infection decays absolutely with 
time, and finally we examine a bivariate model where a node’s 
probability of infection decays relative to the incubation period 
of its parent.

3) Connecting contact tracing and the branching 
bandit problem.
Our key finding is a clean connection between contact tracing and 
the branching bandit problem (26). The branching bandit problem 
broadly belongs to a large class of online decision problems called 
“bandit” problems. The general motivation for the branching ban
dit problem is scheduling projects, where each project returns a 
reward and begets new projects, which must then be scheduled. 
While bandit problems in general have numerous applications 
(46–48), most applications of the branching bandit model are simi
lar scheduling problems. We therefore find this connection be
tween contact tracing and the branching bandit problem 
especially striking, since it extends the branching bandit problem 
to a domain to which it previously has not been applied. We for
malize this connection in Section 8.

Section organization.
The remainder of this section reviews our results in the order in 
which they appear. First we discuss the three models of infection 
we examine: a basic model (Basic model), a univariate model 
(Section 6), and a bivariate model (Section 7). Then we discuss a 
general model of infection which encompasses the previous three 
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models and demonstrates the connection to the branching bandit 
problem (Section 8). Finally, we give an overview of techniques. 
Throughout the paper, for simplicity we refer to “the” optimal pol
icy when we are discussing a specific optimal policy we are con
structing, however models may have multiple optimal policies.

Basic model
The basic model describes a standard model of infection where 
the probability of infection is constant.

THEOREM 4.1 In the basic model, it is optimal to query nodes in or
der of recency.

This result provides insight into some of the most vexing ques
tions from the Introduction. Namely, in practice tracers seem to 
have these two opposing priorities—whether to query more recent 
cases or cases that may have exposed many other contacts. In prac
tice, it seems that tracers lean towards querying in order of recency. 
In our model, this result shows that—even taking into account the 
downstream effects of accessing an individual’s contacts—the op
timal policy is indeed to query the most recent case first.

Univariate model
In the univariate model, the probability of infection decays abso
lutely with time according to an exponential functional form. The 
rate of decay is parameterized by a constant α ≥ 0, where for small 
values of α, the probability of infection is close to constant, and the 
rate of decay accelerates as α increases. While in the basic model 
querying nodes in order of recency is optimal, this is not always 
the case in the univariate model.

For small values of α, when the probability of infection is close 
to constant and the setting resembles that of the basic model, the 
optimal policy queries nodes in order of recency. However, once α 
reaches a certain threshold, the optimal policy no longer queries 
nodes in order of recency, and one may wonder whether any 
structure remains at all. In fact, we find that there is still structure 
to the optimal policy: the policy always queries either the most re
cent or least recent node available. We say that such a policy is de
fined by an interleaved priority ordering.

DEFINITION 6.1: Interleaving property

An ordering σ on {0, 1, …, T} is interleaved if for all 0 ≤ j ≤ T, σj is either 
the maximum or minimum element of the suffix σj, …, σT.

Observe that many different priority orderings satisfy the inter
leaving property. For example, an ordering that prioritizes nodes 
by recency is interleaved, as is an ordering that prioritizes nodes 
by reverse recency. Our main result shows that the interleaving 
property holds for optimal policies in the univariate model.

THEOREM 6.1: In the univariate model, there is an optimal policy 
defined by an interleaved priority ordering.

This result implies that the optimal policy always queries ei
ther the most recent node or least recent node in the frontier, 
which exposes an interesting trade-off between the probability 
that a node is infected, the recency of its exposure, and its ex
pected number of children. Since a less recent node was exposed 
earlier in time, it has a larger number of children in expectation. 
Additionally, since the probability of infection decays with time, 
a less recent node also has a higher probability of infection. 
However, a more recent node, should it be infected, returns a 

higher immediate benefit. This result implies that the optimal pol
icy pursues the extremes: it either queries the least recent node 
with the highest probability of infection and the most children 
in expectation, or it queries the most recent node, which is associ
ated with the highest benefit. It is particularly interesting that the 
optimal policy never tends toward a node of intermediate recency, 
which seems to imply that compromising between these two ex
tremes is suboptimal.

Bivariate model
In the bivariate model, the probability that a node is infected de
cays relative to the incubation period of its parent. As a result, de
fining a node in this model requires examining two parameters, 
the recency of the node and the recency of its parent. For a node 
of recency h with a parent of recency h′, we call Δ= h′ − h the 
span, representing the span of time the parent has been infected 
upon meeting the child. The probability that a node is infected de
cays exponentially as a function of Δ. In this model, each node in 
the frontier is defined by a type (h, Δ), and we examine policies on 
the set of types {0, 1, …, T}2. Thus, the bivariate model demon
strates that we can analyze policies that take into account mul
tiple parameters.

Analyzing optimal policies in the bivariate model reveals 
monotonic structure in the ordering of nodes with the same 
recency.

THEOREM 8.1: In the bivariate model, there is an optimal policy 
that queries nodes with the same recency in order of increasing 
span.

We also explore monotonicity with respect to recency, in a 
more restricted model. Here we find that, for recencies in {0, 1, 
2} and within certain constraints, nodes of the same span are 
queried in order of recency.

THEOREM 8.2: In the bivariate model, for any Bernoulli distribution 
D, a large enough constant β > 0, and restricted to types with re
cencies in {0, 1, 2}, it is optimal to query nodes of the same span 
in order of recency.

While there are examples to show that a restriction on β is ne
cessary, the restriction to Bernoulli distributions and to recencies 
in {0, 1, 2} are functions of our proof technique.

General model
The general model provides a broad framework that allows for a 
variety of factors to affect how individuals interact and how the 
infection spreads. As we saw in the Introduction, in practice indi
viduals are often categorized according to multiple attributes, 
such as their profession or role within a community, their age, 
or the recency of their exposure. The general model captures 
this complexity, by assigning each node a type representing a 
set of attributes. Whereas types in the bivariate model are defined 
by two parameters, types in the general model can be defined by 
an arbitrary number of parameters. As a result, the general model 
encompasses the previous three models as well: in the basic and 
univariate models a node’s type is its recency, and, as before, in 
the bivariate model a node’s type is the pair (h, Δ).

Our main result shows that optimal policies in the general 
model are index policies on types.
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THEOREM 8.1: For any instance of the general model, there is an 
optimal policy that is an index policy on the set of types. 
Moreover, this index policy has an efficient construction.

This result implies that any instance of the general model has 
an optimal policy defined by a priority ordering on types. In order 
to prove this result, we show that any instance of the general mod
el maps to an instance of the branching bandit model.

THEOREM 8.2: The general model reduces to the branching bandit 
model.

This reduction formalizes the connection between contact tra
cing in our model and the branching bandit problem, by showing 
that finding an optimal policy for any instance of the general mod
el requires analyzing an optimal policy for a corresponding in
stance of the branching bandit model.

Summary of techniques
Here we formally define the branching bandit problem and de
scribe how the reduction from the general model to the branching 
bandit problem lays the foundation for our results in the basic, 
univariate, and bivariate models.

The branching bandit model involves arms belonging to classes 
{1, …, L}, where when an arm of class i is pulled it yields a non
negative reward R(i), occupies μ(i) steps, and is replaced by a set 
of new arms Ni1, …, NiL. Each class i has an arbitrary, known, joint 
distribution on the random variables R(i), μ(i), and Ni1, …, NiL. At 
each step t, the system is defined by a vector n(t) = (N1, …, NL), 
where Ni is the total number of arms of class i available, and a re
ward received at step t is discounted by e−ηt for a fixed parameter η 
> 0. The objective is to find a policy for pulling arms that maxi
mizes the total discounted reward accumulated. As we describe 
in “Summarizing Weiss’s Model,” the optimal policy in the branch
ing bandit model is an index policy on the set of classes {1, …, L} 
with an efficient construction.

In Section 8, we reduce the general model to the branching 
bandit model, under a mapping where nodes map to arms, types 
map to classes, benefit maps to reward, and new children re
vealed by querying a node map to new arms acquired by pulling 
an arm. This reduction implies that the optimal policy for any 
instance of the general model is an index policy on types. 
Since the basic, univariate, and bivariate models are all versions 
of the general model, this guarantee extends to these three mod
els as well. In particular, for each instance the reduction pro
vides a construction for a priority ordering that defines the 
optimal policy. However, the construction on its own does not 
describe the policy explicitly or define any properties of the pol
icy beyond the promise that it is an index policy. Revealing the 
structure of these policies requires analyzing the construction 
of optimal policies for each model, which is the main focus of 
the following sections.

Basic model
The basic model describes a standard model of infection where 
the probability of infection is a constant pT ∈ (0, 1]. Since the bene
fit of querying an individual infected for τ steps is e−βτ, the benefit 
of querying an infected individual of recency h on step t is b(h, t) = 
e−β(h+t). The basic model is a special case of both the univariate and 
bivariate models.

Understanding the trade-offs at play.
As described in “Model,” we can view each node in the frontier as 
the root of a tree of exposures, where less recent nodes have more 
children in expectation. Recall that if a node is queried and found 
to be infected, its children are added to the frontier. Therefore, 
querying a less recent node provides an opportunity to significant
ly expand the frontier. On the other hand, since the benefit of 
querying an infected node decays with time, querying a more re
cent node returns a higher expected benefit. When selecting a 
node to query, how should the tracer trade-off between these 
two factors—on the one hand, the expected benefit associated 
with querying a node, and on the other hand, the opportunity to 
access its descendants in the future?

Our main result shows that—even taking into account these 
downstream effects—the optimal policy queries nodes in order 
of recency.

THEOREM 4.1: In the basic model, it is optimal to query nodes in or
der of recency.

One might assume that such a straightforward policy has a cor
respondingly straightforward proof. After all, since querying the 
most recent node returns the highest expected benefit, perhaps 
an elementary exchange argument is sufficient.

An attempt at an elementary exchange argument.
Following this line of reasoning, suppose on step t a node u is the 
most recent node in the frontier, but the tracer selects a less re
cent node v and queries u on some later step. Now consider ex
changing the order of u and v so that u is queried on step t 
instead. If u is infected, then its children are added to the frontier. 
Since any child is more recent than its parent, and since u is the 
most recent node in the frontier on step t, on step t + 1 the children 
of u are more recent than all other nodes in the frontier. Therefore, 
a commitment to prioritizing nodes by recency requires querying 
the descendants of u recursively in order of recency.

Exchanging u and v then becomes tricky. As a thought experi
ment, consider querying either u or v in isolation and then recur
sively querying any descendants in order of recency. Since a node 
is always less recent than its descendants, querying u only ever 
leads to querying nodes more recent than u. However, since v is 
less recent than u, querying v could lead to querying nodes more 
recent than v but less recent than u. From this standpoint, it is un
clear how to compare these two processes or go about an ex
change. One observation is that we could potentially compare 
the two processes if we measured the process catalyzed by v 
only up until the first step where a node less recent than u is quer
ied. In fact, such a scheme already exists; continuing with this ar
gument (which is now far from elementary) essentially requires 
reinventing machinery developed by Weiss for the branching ban
dit model.

Summarizing Weiss’s model
Here we summarize Weiss’s branching bandit model and the op
timal policy for pulling arms, with a slight departure from the ori
ginal notation in (26). Then in “Defining the optimal policy” we 
map the basic model to the branching bandit model by mapping 
each node to an arm and each recency to a class of arms.

Recall that the branching bandit model is a general framework 
involving arms of classes {1, 2, …, L}, where each time an arm of 
class i is pulled it returns a nonnegative reward R(i), occupies 
μ(i) steps, and is replaced by a set of new arms Ni1, …, NiL. 
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Weiss’s key idea is the notion of a period. A period is defined with 
respect to any arbitrary priority ordering σ on classes {1, 2, …, L}. 
For any class i ∈ {1, 2, …, L}, an (i, σj)-period is defined as follows. 
Initially only a single arm of class i exists in the system. On step 
t = 0 the arm of class i is pulled, and from then on at each step 
an arm is pulled according to the priority ordering σ until all 
classes i′ ≼ σj are exhausted. Therefore, an (i, σj)-period is really de
fined with respect to the prefix σ0, σ1, …, σj, since the ordering of the 
later elements is irrelevant.

A few random variables describe an (i, σj)-period. Let r(i, σj) be 
the total discounted reward accumulated during the period, and 
let τ(i, σj) be the duration. Observe that following a period of dur
ation τ(i, σj), the reward of the next query is premultiplied by the 
discount factor e−ητ(i,σj). Call γ(h, σj) = E[e−ητ(i,σj)] the expected 
premultiplier.

Defining the optimal policy in Weiss’s model.
Weiss leverages this notion of a period to inductively construct the 
optimal priority ordering. He then proves that the index policy de
fined by this optimal priority ordering is in fact an optimal policy 
outright.

The optimal priority ordering is constructed via a dynamic pro
gram which maintains an optimal prefix that lengthens in each 
round. In round 0, the highest priority element σ0 is selected. 
Entering any round k > 0, the prefix σ0, σ1, …, σk−1 is fixed, and σk 

is selected by comparing (i, σk−1)-periods over all classes i not in 
the prefix.

Describing the base case requires one more definition. For any i 
∈ {1, 2, …, L} an (i, ∅)-period simply pulls an arm of class i exactly 
once. The reward r(i, ∅), duration τ(i, ∅), and premultiplier γ(i, ∅) 
are defined analogously, so by definition τ(i, ∅) = 1 and γ(i, ∅) = e−η.

The highest priority is assigned to the element with the highest 
expected immediate reward.

σ0 = arg max
i∈{1, ..., L}

E[r(i, ∅)] 

In any round k > 0, the prefix σ0, σ1, …, σk−1 is fixed, and σk is se
lected from the elements not already in the prefix.

σk = arg max
i∈{1, ..., L}∖{σ0, ..., σk−1}

E[r(i, σk−1)]
1 − γ(i, σk−1) 

Section 3 of (26) proves that the priority ordering σ constructed via 
this dynamic program is the optimal priority ordering, and more
over, that the index policy defined by σ is the optimal policy 
overall.

An overview of Weiss’s proof idea.
For a high-level overview of the proof idea, first observe that σ0 is 
the element associated with the maximal expected immediate re
ward. To understand the intuition behind this selection, imagine 
choosing between a node u which returns the maximal expected 
immediate reward and some other node v. Since the expected im
mediate reward of any descendant of v is at most that of u, there is 
no reason to delay querying u in order to access the descendants 
of v.

Moving ahead to any round k > 0, committing to the prefix 
σ0, σ1, …, σk−1 implies that if we query a node, we are committing 
to recursively querying its descendants according to the ordering 
defined by the prefix. Therefore, we are no longer comparing indi
vidual queries but instead (h, σk−1)-periods. To compare periods, 
we need to trade-off between the expected reward E[r(h, σk−1)] re
turned and the expected premultiplier γ(h, σk−1) imposed on the 

queries that follow. In this sense, we can think of σk as selecting, 
from the elements not already in the prefix, the element h whose 
(h, σk−1)-period has the highest expected “rate” of reward in this 
time-discounted setting.

Defining the optimal policy
Here we map the basic model of contact tracing to the branching 
bandit model by mapping nodes to arms, recencies to classes, 
benefit to reward, and the new children revealed by querying a 
node to new arms acquired by pulling an arm. We prove this re
duction formally in Section 8. We now restate the above dynamic 
program applied to the basic model, beginning with the definition 
of a period.

A period is defined with respect to any arbitrary priority order
ing σ on recencies {0, 1, …, T}. For any h ∈ {0, 1, …, T}, an 
(h, σj)-period is defined as follows. Initially only a single root v of 
recency h(v) = h exists in the frontier. On step t = 0 the node v is 
queried, and from then on at each step a descendant is queried ac
cording to σ until all nodes v′ with recency h(v′) ≼ σj are exhausted. 
Let b(h, σj) be the total discounted benefit accumulated during the 
period, let τ(h, σj) be the duration, and let γ(h, σj) = E[e−βτ(h,σj)] be the 
expected premultiplier. For any h ∈ {0, 1, …, T}, an (h, ∅)-period 
simply queries a single root v of recency h(v) = h exactly once. 
The benefit b(h, ∅), duration τ(h, ∅), and premultiplier γ(h, ∅) are de
fined analogously, so by definition τ(h, ∅) = 1 and γ(h, ∅) = e−β. Note 
that the benefit, duration, and premultiplier associated with a pe
riod are by definition nonnegative.

Then σ0 is assigned to the element with the highest expected 
immediate benefit.

σ0 = arg max
h∈{0,...,T}

E[b(h, ∅)] (1) 

In any round k > 0, the prefix σ0, σ1, …, σk−1 is fixed, and σk is se
lected from the elements not already in the prefix.

σk = arg max
h∈{0,...,T}∖{σ0,...,σk−1}

E[b(h, σk−1)]
1 − γ(h, σk−1)

(2) 

Analyzing the optimal policy
While the above dynamic program produces a priority ordering σ 
that defines an optimal policy, this in no way implies that the re
sulting optimal policy queries nodes in order of recency. Indeed, in 
Section 6, we explore other regimes in which optimal policies ex
hibit very different structure. The main challenge in the following 
proof is to show that σ = (0, 1, …, T ), which implies that the optimal 
policy queries nodes in order of recency.

An observation about periods.
The following proof, in addition to many of the proofs in later sec
tions, involves analyzing periods. For the purpose of analysis, it 
will be helpful to separate the immediate benefit returned by 
querying a single root from the benefit returned through recur
sively querying its descendants. Specifically, for a root v with re
cency h(v) = h, we can think of an (h, σj)-period as the 
concatenation of two sub-periods, where v is queried in the first 
sub-period and descendants of v are queried in the second sub- 
period. Thus the first sub-period is equivalent to an (h, ∅)-period. 
If v is infected, then at the start of the second sub-period the chil
dren of v make up the frontier. Since h(v) = h, the children of v have 
recencies defined by a random multiset Z(h) = (Z0, Z1, …, Zh−1) ∼ Dh, 
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where Zj indicates the number of children of recency j. To describe 
the second sub-period, we first need to define a generalization of a 
period, called an epoch.

For any state S = (X0, X1, …, XT), define an (S, σj)-epoch as follows. 
At the start of step t = 0, the state S defines the recencies of nodes 
present in the frontier. On each step, t ≥ 0 nodes are queried accord
ing to the ordering defined by the prefix σ0, σ1, …, σj until all nodes v′ 
with recency h(v′) ≼ σj are exhausted. Let b(S, σj) be the total dis
counted benefit accumulated over the period, let τ(S, σj) be the dur
ation, and call γ(S, σj) = E[e−βτ(S,σj)] the expected premultiplier.

Therefore, an (h, σj)-period can be thought of as an (h, ∅)-period, 
which in the event that the root is infected, is followed by a (Z(h), 
σj)-epoch for Z(h) ∼ Dh. If the root is infected, then a benefit of e−βh 

plus the benefit accumulated during the following epoch is re
turned. If the root is not infected, then no benefit is returned. 
Therefore, the expected benefit accumulated over the (h, σj)- 
period is

E[b(h, σj)] = pT e−βh + e−β E
Z(h)∼Dh

[b(Z(h), σj)]
􏼒 􏼓

(3) 

Likewise γ(h, σj) has a similar decomposition. If the root is infected, 
then τ(h, σj) = 1 + τ(Z(h), σj) where Z(h) ∼ Dh. If the root is not infected, 
then τ(h, σj) = 1. Therefore,

γ(h, σj) = E[e−βτ(h,σj)]

= pT E
Z(h)∼Dh

[e−β(1+τ(Z(h),σj))] + (1 − pT)e−β

= e−β pT E
Z(h)∼Dh

[e−βτ(Z(h),σj)] + 1 − pT

􏼒 􏼓
(4) 

For both decompositions, the expectation is over the randomness 
of a node’s descendants and their infection statuses.

Restating the optimal policy.
The probability of infection is pT, and the benefit of querying an in
fected node of recency h is e−βh, so E[b(h, ∅)] = pTe−βh. Applying this 
definition to Eq. 1, σ0 is assigned the value

arg max
h∈{0,1,...,T}

pTe−βh (5) 

In any round k > 0, the prefix σ0, σ1, …, σk−1 is fixed, and σk is se
lected from the elements not already in the prefix. Let 
H′ = {0, . . . , T}∖{σ0, . . . , σk−1}. Then applying Eqs. 3 and 4 to 2, σk is 
assigned the value

arg max
h∈H′

pT(e−βh + e−β EZ(h)∼Dh [b(Z(h), σk−1)])

1 − e−β(pT EZ(h)∼Dh [e−βτ(Z(h),σj)] + 1 − pT)
(6) 

With these decompositions, we are now equipped to prove 
Theorem 4.1.

THEOREM 4.1: In the basic model, it is optimal to query nodes 790 
in order of recency.

Proof. Fix T ∈ N, pT ∈ (0, 1], and β > 0. Let σ be the optimal priority 
ordering constructed via the dynamic program in “Defining the 
optimal policy.” It suffices to show that for all j ∈ {0, 1, …, T}, σj = j.

Proof by induction on j. By Eq. 5,

σ0 = arg max
h∈{0,1,...,T}

pTe−βh = 0 

Fix 0 < k < T. Assume that for all 0 ≤ j ≤ k − 1, σj = j, resulting in the 
prefix is (0, 1, …, k − 1). Fix h ≥ k. For Z(h) = (Z0, Z1, …, Zh−1) ∼ Dh, con
sider a (Z(h), σk−1)-epoch. The epoch begins in state Z(h), and since 

this particular prefix is in order of recency, nodes are then queried 
recursively in order of recency until all nodes v′ of recency h(v′) ≤ k 
− 1 are exhausted. Thus a (Z(h), σk−1)-epoch only queries nodes 
with recencies in {0, 1, …, k − 1}. Let Πk(Z(h)) = (Z0, Z1, …, Zk−1) 
be the projection of Z(h) onto the first k coordinates, and 
note that Πk(Z(h)) ∼ Dk. Thus the benefit and duration of a (Z(h), 
σk−1)-epoch are identically distributed as the benefit and duration 
of a (Πk(Z(h)), σk−1)-epoch. Call the total expected benefit bk and ob
serve that it does not depend on h.

bk = E
Z(h)∼Dh

[b(Z(h), σk−1)]

= E
Z(h)∼Dh

[b(Πk(Z(h)), σk−1)]

= E
Z(k)∼Dk

[b(Z(k), σk−1)]

(7) 

Since the durations are also identically distributed, the expected 
premultipliers are equal. Call this premultiplier γk and observe 
that it does not depend on h.

γk = E
Z(h)∼Dh

[γ(Z(h), σk−1)]

= E
Z(h)∼Dh

[γ(Πk(Z(h)), σk−1)]

= E
Z(k)∼Dk

[γ(Z(k), σk−1)]

(8) 

Combining Eqs. 3 and 7, the expected benefit of an (h, σk−1)- 
period is

E[b(h, σk−1)] = pT e−βh + e−β E
Z(h)∼Dh

[b(Z(h), σk−1)]
􏼒 􏼓

= pT(e−βh + e−βbk) 

Likewise, combining Eqs. 4 and 8, the expected premultiplier is

γ(h, σk−1) = e−β pT E
Z(h)∼Dh

[e−βτ(Z(h),σk−1)] + 1 − pT

􏼒 􏼓

= e−β(pTγk + 1 − pT) 

By Eq. 6, given the prefix (0, 1, …, k − 1), σk is selected by compar
ing (h, σk−1)-periods for h ∈ {k, …, T}. Therefore for all h in consid
eration, the above identities hold. Then

σk = arg max
h∈{k,...,T}

E[b(h, σk−1)]
1 − γ(h, σk−1)

= arg max
h∈{k,...,T}

pT(e−βh + e−βbk)
1 − e−β(pTγk + 1 − pT)

= k 

To understand the final equality, note that e−βh decreases with 
h, and all other terms are constant with respect to h. Thus k, the 
smallest value of h in consideration, attains the maximum. 
Since σk = k, for all j ∈ {0, 1, …, T}, σj = j.

Thus, despite the fact that the optimal policy in the basic set
ting is simply querying nodes in order of recency, the proof of op
timality requires balancing trade-offs between recency and 
benefit.

Discussion
We present contact tracing as an algorithm design problem where 
the objective is to develop a policy that prioritizes contacts to 
trace. Through a clean connection to the branching bandit model 
(26), we develop provably optimal policies for a variety of infection 
models. Analyzing the structure of these policies leads to 
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qualitative insights about trade-offs in contact tracing applica
tions. In the previous section, we examined the basic model, 
where the probability of transmission is constant, and the optimal 
policy reflects the prioritization of contacts by recency that we see 
in practice. In the supplementary section, we study more complex 
models of infection, where the optimal policy depends on the spe
cific parameters of the model yet still exhibits clear structure. 
Finally, we conclude with a general model, which has the capacity 
to model arbitrary interactions between individuals based on fac
tors like an individual’s profession, role within a community, or 
their risk of infection.

There are many compelling questions to consider going for
ward. One interesting question is how to analyze optimal policies 
in a dynamic setting, where contact tracing proceeds while the in
fection is spreading. We are currently exploring this setting in on
going work (27). A key question here is how to choose the objective 
function. On the one hand, the algorithm ought to be rewarded for 
identifying infected cases. On the other hand, the algorithm ought 
to prevent the spread of new cases, which in a formal sense works 
against the goal of identifying infected cases. This makes defining 
the objective function somewhat subtle. Another interesting 
question to consider is backward contact tracing. In this paper, 
we examined forward contact tracing, which traces any infections 
due to an individual, while in backward contact tracing the goal is 
to identify the source of the infection. Finally, it is an interesting 
question to ask how theoretical recommendations in general 
can be integrated into manual contact tracing.

Notes

a. We say “day” for simplicity; a day represents an arbitrary unit of 
time.

b. We will have more to say about how benefit depends on time, but 
roughly speaking this says that treating someone sooner is better 
than later.

c. That is, discounting begins at t = 0. For the sake of simplicity, for 
the example in “Example” discounting begins at t = 1.

d. The terms “index” and “index policy” are from the operations re
search literature and have no relation to the term “index case.”

Supplementary material
Supplementary material is available at PNAS Nexus online.
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